# Conductance of Electrolytes in Dipolar Aprotic Solvent Mixtures. II. Conductance of Lithium Perchlorate in Mixtures of Ethyl Methyl Ketone and Acetone with N,N-Dimethylformamide at 25 °C

M. S. K. NIAZI
Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
(Received May 22, 1987)

The electrolytic conductance of LiClO<sub>4</sub> has been determined in N,N-dimethylformamide (DMF) and its binary mixtures with acetone (Ac) and ethyl methyl ketone (MEK) at 25 °C. Ion association constants ( $K_A$ ) and limiting molar conductance ( $\Lambda_0$ ) were calculated from these data using Fuoss equation with modifications. The  $K_A$  values of LiClO<sub>4</sub> in these binary mixtures are interpreted in terms of solvent separated ion pairs while in pure Ac and MEK almost contact ion pairs are expected. A comparison is made for  $\Lambda_0$  and  $K_A$  values of this salt in Ac and Ac-DMF mixtures with those obtained by Gill et al. Further, a comparison is made between these results and spectroscopically derived results by others in analogous media. LiClO<sub>4</sub> has been found more associated in Ac-DMF solvent system than in the MEK-DMF mixed solvent system.

A large number of conductometric and spectroscopic studies of concentrated solutions of LiClO<sub>4</sub> have been carried out in an aprotic solvent systems in various laboratories. <sup>1-4,14)</sup> But very few number of precise conductance measurements on dilute solution of this salt in acetone (Ac), N,N-dimethylformamide (DMF), and Ac-DMF mixed solvent system are available in literature. <sup>5-7)</sup> No literature data have been found about conductance of LiClO<sub>4</sub> in ethyl methyl ketone (MEK) and its binary mixtures with DMF at 25 °C.

As a continuation of conductance measurements of electrolytes in dipolar aprotic solvent mixtures, 8) present paper reports conductance of LiClO<sub>4</sub> in Ac, MEK, DMF, Ac-DMF, and MEK-DMF binary mixtures in a concentration range  $10^{-4}$ — $10^{-2}$  mol dm<sup>-3</sup> at 25 °C. The limiting molar conductance ( $\Lambda_0$ ) and ion association constant  $(K_A)$  were evaluated from the conductance data using the Fuoss equation 10) with modifications. The Bjerrum ion association theory as modified by Fernandez-Prini and Pure<sup>11,12)</sup> was also used for derivation of  $K_A$  (as  $K_A^{BFPP}$ ) and ion pair distance parameter a. The derived parameters are compared with those obtained by Gill et al. for this salt in Ac-DMF binary mixtures. Further, results of spectroscopic studies of LiClO<sub>4</sub> in pure solvents (in Ac and DMF) which are available from literatures<sup>4b,5,13)</sup> are discussed for comparison purpose with the present results.

### **Experimental**

Chemicals. Acetone, DMF, and MEK were products of Merck (for synthesis). The procedure for purification of these solvents together with densities  $\rho$ , viscosities  $\eta$ , and dielectric constants  $\varepsilon$  are given in detail in previous papers.<sup>8,9)</sup> All solution preparation was carried out in the presence of dry nitrogen gas. The purified solvents contained no more than 0.01% (w/w) water. The mixtures were prepared by weight and are given in Table 1. LiClO<sub>4</sub> and KCl were of analytical grade (pure p. a Fluka). They were twice recrystallized from conductivity water, dried in an oven at 170 °C for several days and then dried in vaccum at 70 °C over  $P_2O_5$  and were kept in a desiccator over  $P_2O_5$ .

Conductance Measurements. Conductance measurements were carried out using ORION Research Conductivity Meter, Model 101 at 1 kHz. Two 1 dm³ Kraus-type conductance cells were used, whose cell constants were 1.1538 and 0.1932 cm $^{-1}$  calibrated with aqueous KCl solutions at  $25\pm0.005\,^{\circ}\text{C}$ . The platinized Pt electrodes were used. Further procedure was the same as described earlier. Measurements were carried out in a water bath at  $25\pm0.005\,^{\circ}\text{C}$  and the reproducibility of the conductance measurement was better than  $\pm0.01\%$ . The conductance data are listed in Tables 2 and 3 and are presented in Figs. 1 and 2.

#### Results

The molar conductance of the salt solutions (listed in Tables 2 and 3) were corrected for the solvent conductances. The Fuoss conductance equation,  $^{10)}$  with modifications was used to evaluate the limiting molar conductance ( $\Lambda_0$ ) and the conductometric association constant ( $K_A$ ) from conductance data using his scan

Table 1. Physical Properties of AC-DMF and MEK-DMF Binary Mixtures at 25 °C

| S.No. | DMF/wt%        | ε       | η/cp <sup>a)</sup> | $\rho/\mathrm{gcm^{-3}}$ |  |  |  |  |  |  |
|-------|----------------|---------|--------------------|--------------------------|--|--|--|--|--|--|
|       | Ac-DMF mixture |         |                    |                          |  |  |  |  |  |  |
| l     | 0.00           | 20.14   | 0.300              | 0.7838                   |  |  |  |  |  |  |
| 2     | 3.45           | 20.62   | 0.310              | 0.7890                   |  |  |  |  |  |  |
| 3     | 11.50          | 21.85   | 0.334              | 0.8000                   |  |  |  |  |  |  |
| 4     | 28.00          | 24.26   | 0.383              | 0.8238                   |  |  |  |  |  |  |
| 5     | 36.00          | 25.44   | 0.405              | 0.8363                   |  |  |  |  |  |  |
| 6     | 45.00          | 27.16   | 0.457              | 0.8503                   |  |  |  |  |  |  |
| 7     | 62.00          | 29.74   | 0.514              | 0.8815                   |  |  |  |  |  |  |
| 8     | 82.00          | 33.47   | 0.649              | 0.9141                   |  |  |  |  |  |  |
| 9     | 100.00         | 36.71   | 0.796              | 0.9439                   |  |  |  |  |  |  |
|       | MEI            | K-DMF n | nixture            |                          |  |  |  |  |  |  |
| 1′    | 0.00           | 18.01   | 0.379              | 0.7998                   |  |  |  |  |  |  |
| 2′    | 5.00           | 18.80   | 0.396              | 0.8045                   |  |  |  |  |  |  |
| 3′    | 11.00          | 19.78   | 0.411              | 0.8128                   |  |  |  |  |  |  |
| 4'    | 17.00          | 20.70   | 0.430              | 0.8237                   |  |  |  |  |  |  |
| 5′    | 28.00          | 22.49   | 0.471              | 0.8445                   |  |  |  |  |  |  |
| 6'    | 54.00          | 27.29   | 0.560              | 0.8748                   |  |  |  |  |  |  |
| 7′    | 77.00          | 31.85   | 0.669              | 0.9199                   |  |  |  |  |  |  |
| 8′    | 86.00          | 33.77   | 0.713              | 0.9235                   |  |  |  |  |  |  |

a)  $1cp=10^{-3} Pa s$ .

Table 2. Molar Concentrations and Conductances of LiClO<sub>4</sub> Solutions in AC-DMF Mixtures at 25 °C

| Ace                  | etone                               | 3.45                 | % DMF                               | 11.50                | % DMF                               | 28.00                | % DMF                               | 36.00                | % DMF                               |
|----------------------|-------------------------------------|----------------------|-------------------------------------|----------------------|-------------------------------------|----------------------|-------------------------------------|----------------------|-------------------------------------|
| 10 <sup>4</sup> c    | Λ                                   |
| mol dm <sup>-3</sup> | S cm <sup>2</sup> mol <sup>-1</sup> | mol dm <sup>-3</sup> | S cm <sup>2</sup> mol <sup>-1</sup> | mol dm <sup>-3</sup> | S cm <sup>2</sup> mol <sup>-1</sup> | mol dm <sup>-3</sup> | S cm <sup>2</sup> mol <sup>-1</sup> | mol dm <sup>-3</sup> | S cm <sup>2</sup> mol <sup>-1</sup> |
| 1.1822               | 168.836                             | 2.1862               | 170.354                             | 1.8623               | 158.888                             | 1.2243               | 149.666                             | 1.3785               | 134.908                             |
| 2.3248               | 152.629                             | 4.2994               | 165.122                             | 3.6624               | 154.585                             | 2.4076               | 146.624                             | 3.6943               | 132.133                             |
| 3.4299               | 142.372                             | 6.3430               | 161.283                             | 5.4033               | 151.485                             | 3.554                | 144.886                             | 5.4503               | 130.042                             |
| 4.4990               | 134.587                             | 8.3205               | 158.075                             | 7.0875               | 148.777                             | 4.6595               | 142.258                             | 7.1495               | 128.321                             |
| 5.5345               | 128.613                             | 10.3250              | 155.221                             | 8.7187               | 146.678                             | 5.7316               | 140.642                             | 8.7945               | 126.870                             |
| 6.5345               | 123.656                             | 12.0895              | 153.128                             | 10.2985              | 144.702                             | 6.7702               | 139.021                             | 10.3881              | 125.591                             |
| 7.5092               | 119.473                             | 13.8868              | 150.111                             | 11.8295              | 143.021                             | 7.7702               | 138.859                             | 11.9324              | 124.454                             |
| 8.4515               | 115.905                             | 15.6295              | 149.428                             | 13.3140              | 141.598                             | 8.7525               | 136.503                             | 13.4298              | 123.442                             |
| 9.3656               | 112.706                             | 17.3200              | 147.888                             | 14.7541              | 140.228                             | 9.6992               | 135.425                             | 14.8824              | 122.504                             |
| 10.2528              | 110.081                             | 18.9607              | 146.445                             | 16.1517              | 139.025                             | 10.6179              | 134.501                             | 16.2921              | 121.666                             |
| 11.2528              | 107.390                             | 20.5536              | 145.227                             | 17.5086              | 137.887                             | 11.6179              | 133.522                             | 17.9213              | 120.753                             |
| 11.9909              | 105.393                             | 22.1009              | 143.933                             | 18.8267              | 136.854                             | 12.3765              | 132.649                             | 18.9905              | 120.176                             |
| 12.7639              | 103.636                             | 23.6046              | 142.708                             | 20.1076              | 135.892                             | 13.2186              | 132.000                             | 20.2824              | 119.503                             |
| 13.5544              | 101.759                             | 25.0663              | 141.758                             | 21.3528              | 135.128                             | 14.0371              | 131.205                             | 21.5385              | 118.882                             |
| 14.3231              | 100.137                             | 27.8709              | 140.855                             | 22.5637              | 134.354                             | 14.8332              | 130.642                             | 22.7598              | 118.222                             |
| 15.0709              | 98.648                              | 29.2171              | 139.999                             | 23.7419              | 133.588                             | 15.6077              | 130.001                             | 23.9484              | 117.735                             |
| 16.5075              | 96.006                              | 30.5276              | 139.125                             | 24.8886              | 132.001                             | 16.3676              | 129.432                             | 25.1050              | 117.224                             |
| 17.1977              | 95.628                              | 31.8041              | 138.656                             | 26.3526              | 131.628                             | 17.0955              | 128.844                             |                      |                                     |

| 45%                  | DMF                                 | 62%                  | DMF                               | Pure                 | DMF                               | 82%                  | DMF                                 |
|----------------------|-------------------------------------|----------------------|-----------------------------------|----------------------|-----------------------------------|----------------------|-------------------------------------|
| 10 <sup>4</sup> c    | Λ                                   | 10 <sup>4</sup> c    | Λ                                 | 10 <sup>4</sup> c    | Λ                                 | 10 <sup>4</sup> c    | Λ                                   |
| mol dm <sup>-3</sup> | S cm <sup>2</sup> mol <sup>-1</sup> | mol dm <sup>-3</sup> | $S \text{ cm}^2 \text{ mol}^{-1}$ | mol dm <sup>-3</sup> | $S \text{ cm}^2 \text{ mol}^{-1}$ | mol dm <sup>-3</sup> | S cm <sup>2</sup> mol <sup>-1</sup> |
| 1.7127               | 129.032                             | 0.9717               | 107.638                           | 1.9044               | 75.004                            | 1.5158               | 86.655                              |
| 3.3625               | 126.499                             | 1.9108               | 106.808                           | 3.7454               | 73.898                            | 2.9809               | 85.400                              |
| 4.9527               | 124.488                             | 2.8191               | 104.888                           | 5.5255               | 73.053                            | 4.5778               | 84.528                              |
| 6.4865               | 122.955                             | 3.6980               | 104.003                           | 7.2481               | 72.246                            | 5.7688               | 83.787                              |
| 7.9668               | 121.563                             | 4.5489               | 103.344                           | 8.9158               | 71.722                            | 8.3821               | 82.613                              |
| 9.3964               | 120.446                             | 5.3731               | 102.846                           | 10.5313              | 71.156                            | 9.6282               | 82.006                              |
| 10.7778              | 119.404                             | 6.1719               | 102.272                           | 12.0970              | 70.721                            | 10.8365              | 81.642                              |
| 12.1195              | 118.465                             | 6.9464               | 101.844                           | 13.6150              | 70.266                            | 12.0086              | 81.058                              |
| 13.4057              | 117.642                             | 7.6978               | 101.415                           | 15.0877              | 69.788                            | 13.1461              | 80.522                              |
| 14.6567              | 116.801                             | 8.4269               | 101.002                           | 16.5168              | 69.342                            | 14.2505              | 80.012                              |
| 15.8678              | 116.200                             | 9.1349               | 100.623                           | 17.9045              | 69.001                            | 15.3233              | 79. <del>4</del> 88                 |
| 17.0666              | 115.535                             | 9.8226               | 99.988                            | 19.2524              | 68.653                            | 16.3658              | 78.900                              |
|                      |                                     | 10.4909              | 99.333                            | 20.5622              | 68.349                            | 17.3793              | 78.384                              |
|                      |                                     | 11.1405              | 98.489                            | 21.8355              | 68.001                            | 18.3649              | 77.867                              |
|                      |                                     | 11.6129              | 97.788                            | 23.0739              | 67.752                            | 19.3231              | 77.244                              |
|                      |                                     | 12.3871              | 97.212                            | 24.2787              | 67.482                            | 20.2572              | 76.849                              |

program<sup>10a</sup>) in which R (Gurney cosphere distance) was varied from 3 to 30 Å with increment of 0.2 Å.

 $K_A$  for ion pair formation of the type  $M^+ + X^- = M^+X^-$  is given by

$$K_{\rm A} = (1 - \gamma)/C\gamma^2 \int_{\pm}^2 , \qquad (1)$$

where  $f_{\pm}$  was given by  $\exp\left[-\tau/(1+kR)\right]$  with  $\tau=\beta k/2$  where  $k^{-1}$  is the Debye distance,  $\beta=e^2/\epsilon RT$ , and other symbols have their usual meanings. The scan program also evaluated  $\sigma$  (standard deviation expressed as a percentage of  $\Lambda_0$ ). Plots of  $\sigma$  vs. R showed minima for each solvent mixtures and the derived values of  $\Lambda_0$  and  $K_A$  along with  $\sigma$  and R are given in Tables 4 and 5.

and  $K_A$  along with  $\sigma$  and R are given in Tables 4 and 5. The association constant  $K^{BFPP}$  from the Bjerrum ion association theory<sup>11)</sup> as modified by Fernandez-Prini and Prue<sup>12)</sup> was also evaluated from the following expression

$$K_{\rm A}^{\rm BFPP} = 4\pi \, NA \int_{r=a}^{q} \exp \left[-U(r)/K_{\rm B}T\right] r^2 \, {\rm d}r,$$
 (2)

and

$$U(r) = \int_{\infty}^{r} e^{2} \cdot dr / \varepsilon' r^{2} = e^{2} \int_{\infty}^{\tau_{1}} dr / \varepsilon r^{2} + e^{2} \int_{\tau_{1}}^{r} dr / \varepsilon' r^{2}, \tag{3}$$

where q is Bjerrum distance parameter.

In this modification, the association is corrected by introduction of a distance dependent dielectric coefficient  $\varepsilon'$  replacing the static dielectric constant  $(\varepsilon)$  of the medium. Booth<sup>23)</sup> derived the following expression for the variation of  $\varepsilon'$  with intensity of electric field

$$\varepsilon' = (3/\gamma)(\varepsilon - n^2)L(\gamma) + n^2, \tag{4}$$

where  $y=\beta'Ze/\epsilon'r^2$ , L(y) is the Langevin function, L(y)=Cot h(y)=1/y, and  $Ze/\epsilon'r^2$  is the intensity of electric

Table 3. Molar Concentrations and Conductances of LiClO<sub>4</sub> Solutions in MEK-DMF Mixtures at 25°C

| Pure                 | MEK                                 | 5%                   | DMF                                 | 11%                  | DMF                                 | 17% DMF              |                                     |
|----------------------|-------------------------------------|----------------------|-------------------------------------|----------------------|-------------------------------------|----------------------|-------------------------------------|
| 10 <sup>4</sup> c    | Λ                                   | 10 <sup>4</sup> c    | 1                                   | 10 <sup>4</sup> c    | Λ                                   | 10 <sup>4</sup> c    | Λ                                   |
| mol dm <sup>-3</sup> | S cm <sup>2</sup> mol <sup>-1</sup> | mol dm <sup>-3</sup> | S cm <sup>2</sup> mol <sup>-1</sup> | mol dm <sup>-3</sup> | S cm <sup>2</sup> mol <sup>-1</sup> | mol dm <sup>-3</sup> | S cm <sup>2</sup> mol <sup>-1</sup> |
| 0.9878               | 165.078                             | 1.9608               | 150.136                             | 1.9608               | 139.312                             | 1.9608               | 129.022                             |
| 1.9427               | 158.053                             | 3.8461               | 144.062                             | 3.8461               | 134.754                             | 3.3461               | 125.441                             |
| 2.8661               | 152.736                             | 5.6604               | 139.582                             | 5.6604               | 131.342                             | 5.6604               | 122.694                             |
| 3.7596               | 148.422                             | 7.4074               | 136.030                             | 7.4074               | 128.600                             | 7.4074               | 120.457                             |
| 4.6247               | 144.804                             | 9.0909               | 133.075                             | 9.0909               | 126.301                             | 9.0909               | 118.668                             |
| 5.4627               | 141.688                             | 10.7143              | 130.568                             | 10.7143              | 124.316                             | 10.7143              | 116.987                             |
| 6.2748               | 139.001                             | 12.2807              | 128.477                             | 12.2807              | 122.602                             | 12.2807              | 115.502                             |
| 7.0622               | 136.564                             | 13.7931              | 126.456                             | 13.7931              | 121.043                             | 13.7931              | 114.232                             |
| 7.8261               | 134.408                             | 15.2542              | 124.753                             | 15.2542              | 119.882                             | 15.2542              | 113.0178                            |
| 8.5674               | 132.460                             | 16.6666              | 123.220                             | 16.6666              | 118.430                             | 16.6666              | 112.043                             |
| 9.2872               | 130.587                             | 18.0328              | 121.905                             | 18.0328              | 117.300                             | 18.0328              | 111.098                             |
| 9.9863               | 129.081                             | 19.3548              | 120.588                             | 19.3548              | 116.270                             | 19.3548              | 110.220                             |
| 10.6658              | 127.600                             | 20.6349              | 119.425                             | 20.6348              | 115.321                             | 20.6349              | 109.410                             |
| 11.3262              | 126.232                             | 21.3750              | 118.781                             | 21.3750              | 114.445                             | 21.3750              | 108.676                             |
| 11.9686              | 125.000                             | 23.0769              | 117.457                             | 23.0769              | 113.610                             | 23.0769              | 107.999                             |
| 12.5935              | 123.886                             | 24.2424              | 116.482                             | 24.2424              | 112.903                             | 24.2424              | 107.345                             |
| 13.2018              | 122.700                             | 25.3731              | 115.555                             | 25.3731              | 112.128                             | 25.3731              | 106.745                             |
|                      |                                     | 26.2706              | 114.849                             | 26.2706              | 111.506                             | 26.2706              | 106.193                             |
|                      |                                     | 27.5314              | 113.222                             | 27.5314              | 110.905                             | 27.5314              | 105.657                             |

| 28%                  | DMF                                 | 54%                  | DMF                                 | 77%                  | DMF                                 | 86%                  | DMF                                 |
|----------------------|-------------------------------------|----------------------|-------------------------------------|----------------------|-------------------------------------|----------------------|-------------------------------------|
| 10 <sup>4</sup> c    | Λ                                   |
| mol dm <sup>-3</sup> | S cm <sup>2</sup> mol <sup>-1</sup> | mol dm <sup>-3</sup> | S cm <sup>2</sup> mol <sup>-1</sup> | mol dm <sup>-3</sup> | S cm <sup>2</sup> mol <sup>-1</sup> | mol dm <sup>-3</sup> | S cm <sup>2</sup> mol <sup>-1</sup> |
| 1.9608               | 123.854                             | 1.9608               | 118.8521                            | 1.9608               | 96.859                              | 1.9608               | 85.500                              |
| 3.8461               | 120.137                             | 3.8461               | 114.2111                            | 3.8461               | 93.284                              | 3.8461               | 82.715                              |
| 5.6604               | 117.586                             | 5.6604               | 111.568                             | 5.6604               | 91.036                              | 5.6604               | 80.585                              |
| 7.4074               | 115.241                             | 7.4074               | 109.555                             | 7.4074               | 89.285                              | 7.4074               | 79.238                              |
| 9.0909               | 113.006                             | 9.0909               | 107.121                             | 9.0909               | 88.176                              | 9.0909               | 77.956                              |
| 10.7143              | 111.586                             | 10.7143              | 106.103                             | 10.7143              | 87.034                              | 10.7143              | 76.834                              |
| 12.2807              | 110.132                             | 12.2807              | 104.889                             | 12.2807              | 86.003                              | 12.2807              | 75.723                              |
| 13.7931              | 109.211                             | 13.7931              | 103.522                             | 13.7842              | 85.135                              | 13.7842              | 74.688                              |
| 15.2592              | 107.867                             | 15.2542              | 102.285                             | 15.2542              | 84.276                              | 15.2542              | 73.601                              |
| 16.6666              | 106.999                             | 16.6666              | 101.200                             | 16.6666              | 83.358                              | 16.6666              | 72.702                              |
| 18.0328              | 105.878                             | 18.0328              | 100.285                             | 18.0328              | 82.488                              | 18.0328              | 71.811                              |
| 19.3548              | 105.003                             | 19.3548              | 99.376                              | 19.3548              | 81.693                              | 19.3548              | 70.928                              |
| 20.6349              | 104.355                             | 20.6349              | 98.433                              | 20.6349              | 80.888                              | 20.6349              | 70.037                              |
| 21.8769              | 103.853                             | 21.8769              | 97.621                              | 21.8750              | 80.001                              | 21.8750              | 69.254                              |
| 23.0760              | 103.021                             | 23.0760              | 96.831                              | 23.0769              | 79.205                              | 23.0769              | 68.600                              |
| 24.2424              | 102.285                             | 24.2424              | 96.100                              | 24.2424              | 78.531                              | 24.2424              | 68.000                              |
| 25.3731              | 101.573                             | 25.3731              | 95.452                              | 25.3731              | 77.866                              | 25.3731              | 67.418                              |
| 26.5362              | 101.003                             | 26.4706              | 94.833                              | 26.4704              | 77.214                              | 26.4704              | 66.805                              |
| 27.5362              | 99.582                              | 27.5362              | 94.304                              | 27.5314              | 76.666                              | 27.5314              | 66.233                              |

field in the region r from the charge (Ze). The  $\beta'$  is given by the expression

$$\beta' = (n^2 + 2)\mu/2K_BT,$$
 (5)

where n,  $\mu$  are the refractive index and dipole moment of the medium respectively. The values of n and  $\mu$  for pure solvents were taken from the literature<sup>24)</sup> and for mixture it was supposed that  $n_{\text{mix}}=x_1n_1+x_2n_2$  and  $\mu_{\text{mix}}=(x_1\mu_1+x_2\mu_2)$  as found in case of other physical properties of these solvent mixtures.<sup>9)</sup> Integrals Eqs. 2 and 3 were solved numerically and derived parameters are listed in Tables 6 and 7. In Eq. 2, a is the contact ion-pair distance. All the symbols in Eqs. 2 and 3 are described in detail in original papers.<sup>12a)</sup> The values of

 $K_A^{BFPP}$  were found almost the same as  $K_A$ . The values of  $U(r)/K_BT$  and a derived from Eqs. 2 and 3 are given in Tables 6 and 7.

The thermodynamic ion pair association constant  $K_a$  for the reaction  $M^++X^- \rightleftharpoons M^+X^-$  was calculated from the  $K_A$  values using a relationship

$$K_{\rm a} = (1000 \ \rho/M) K_{\rm A}, \tag{6}$$

where  $M/1000\rho$  (dm<sup>3</sup> mol<sup>-1</sup>) is the molecular volume of the solvent and M is its molecular weight.<sup>10)</sup> The free energy of ion pair formation is related with  $K_a$  through a relationship

$$\Delta G = -RT \ln K_{a}. \tag{7}$$

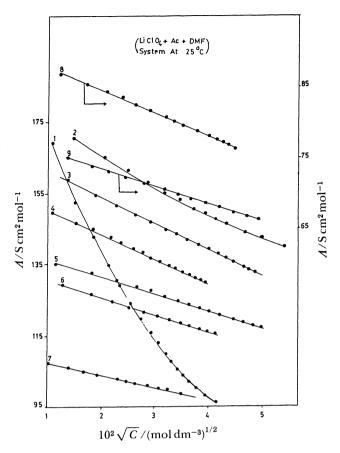



Fig. 1. Dependence of molar conductances of Li-ClO<sub>4</sub> on square root of its concentration in Ac-DMF binary mixtures at 25°C.

Table 4. Conductance Parameters for LiClO<sub>4</sub> in Ac-DMF Binary Mixtures at 25°C

| DMF    | $A_0$                               | ν                | σ     | $10^{8}R$ |
|--------|-------------------------------------|------------------|-------|-----------|
| wt%    | S cm <sup>2</sup> mol <sup>-1</sup> | $K_{\mathbf{A}}$ | %     | cm        |
| 0.00   | 197.24 ±2.42                        | 1550±255         | 0.032 | 15—18     |
| 3.45   | $182.36 \pm 0.14$                   | 540±20           | 0.021 | 10—12     |
| 11.50  | $168.32 \pm 0.16$                   | 198±9            | 0.060 | 8.6       |
| 28.00  | $155.81 \pm 0.12$                   | 93±4             | 0.103 | 8.2       |
| 36.00  | $143.23 \pm 0.03$                   | 55±3             | 0.033 | 7.8       |
| 45.00  | $134.00 \pm 0.04$                   | 41±7             | 0.012 | 7.4       |
| 62.00  | $110.79 \pm 0.03$                   | $26 \pm 4$       | 0.011 | 6.8       |
| 82.00  | $90.40 \pm 0.02$                    | $17 \pm 3$       | 0.005 | 6.6       |
| 100.00 | $77.24 \pm 0.18$                    | 9±2              | 0.003 | 6.00      |

Table 5. Conductance Parameters for LiClO<sub>4</sub> in MEK-DMF Binary Mixture at 25°C

| DMF   | $A_0$                               | $\nu$      | σ     | $10^{8}R$ |
|-------|-------------------------------------|------------|-------|-----------|
| wt%   | S cm <sup>2</sup> mol <sup>-1</sup> | $K_{A}$    | %     | cm        |
| 0.00  | 178.86±0.63                         | 785±25     | 0.037 | 13—15     |
| 5.00  | $163.45 \pm 0.55$                   | $231\pm8$  | 0.014 | 10.8      |
| 11.00 | $155.92 \pm 0.13$                   | $126\pm6$  | 0.011 | 9.4       |
| 17.00 | $149.38 \pm 0.39$                   | 89±3       | 0.005 | 8.6       |
| 28.00 | $137.3 \pm 0.28$                    | 63±5       | 0.033 | 7.8       |
| 54.00 | $125.75\pm0.06$                     | $28 \pm 4$ | 0.027 | 7.6       |
| 77.00 | $96.85 \pm 0.03$                    | $18\pm3$   | 0.041 | 6.8       |
| 86.00 | $86.63 \pm 0.02$                    | 12±2       | 0.007 | 6.6       |

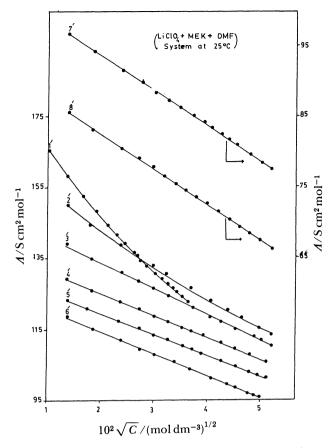



Fig. 2. Dependence of molar conductances of Li-ClO<sub>4</sub> on square root of its concentration in MEK-DMF binary mixtures at 25 °C.

The values of  $-\Delta G/RT$  for Li<sup>+</sup>ClO<sub>4</sub><sup>-</sup>-ion-pair formation in the Ac, MEK, DMF, Ac-DMF, and MEK-DMF solvent systems are included in Tables 6 and 7.

## Discussion

Limiting Molar Conductances. The  $\Lambda_0$  (LiClO<sub>4</sub>) values found for pure Ac, DMF, and MEK in the present work are 197.24, 77.24, and 178.86 S·cm²·mol<sup>-1</sup>, respectively, in agreement with values reported in literature.<sup>5-7)</sup> No values of  $\Lambda_0$  for LiClO<sub>4</sub> in MEK were available in literature. Comparing with the values of  $\Lambda_0$  for LiClO<sub>4</sub> in Ac and LiBr and LiI in MEK (154 and 147 S·cm²·mol<sup>-1</sup>) respectively,<sup>12b)</sup> the present value seems to be reasonable. This can be confirmed further by comparing viscosities of Ac and MEK which are 0.300 and 0.379 cp respectively. Addition of DMF either to Ac or to MEK decreased the values of  $\Lambda_0$  for LiClO<sub>4</sub> in the Ac-DMF and MEK-DMF mixed solvent systems (Tables 4 and 5) due to the corresponding increase of viscosities of the mixtures.

The Association Constants. The association constants  $K_A$  and  $K_A^{BFPP}$  for LiClO<sub>4</sub> in Ac-DMF as well as in MEK-DMF showed no significant difference and consequently, only  $K_A$  are reported in Tables 4 and 5. These values for LiClO<sub>4</sub> in pure Ac, MEK, and DMF derived from conductance data in present work are

Table 6. Parameters Derived for LiClO<sub>4</sub> Using Eqs. 2 and 3 and Values of Free Energy Change of Ion-Pair Formation in Ac-DMF Binary Mixtures at 25°C

| DMF    | $\frac{\text{DMF}}{\text{wt\%}}$ $K_{\text{A}}^{\text{BFPP}}$ $\varepsilon$ | BFPP  |       | $10^8 q$ | $10^{8} a$ | $-U^{(\mathrm{r})}/K_{\mathrm{B}}T$ | $-\Delta G/RT$ |
|--------|-----------------------------------------------------------------------------|-------|-------|----------|------------|-------------------------------------|----------------|
| wt%    |                                                                             | ε′    | cm    | cm       | -0 · / KB1 | $\Delta G/RI$                       |                |
| 0.00   | 1650                                                                        | 20.14 | 7.42  | 13.91    | 3.00       | 11.26                               | 9.91           |
| 3.45   | 580                                                                         | 20.64 | 9.69  | 13.57    | 3.25       | 9.68                                | 8.89           |
| 11.50  | 212                                                                         | 21.80 | 15.38 | 12.85    | 3.73       | 7.35                                | 7.88           |
| 28.00  | 99                                                                          | 24.12 | 19.77 | 11.61    | 4.11       | 5.86                                | 7.13           |
| 36.00  | 62                                                                          | 25.28 | 23.21 | 11.08    | 4.92       | 4.58                                | 6.59           |
| 45.00  | 48                                                                          | 26.77 | 24.83 | 10.46    | 5.03       | 4.21                                | 6.29           |
| 62.00  | 31                                                                          | 29.58 | 27.55 | 9.47     | 5.03       | 3.81                                | 5.81           |
| 82.00  | 21                                                                          | 33.23 | 30.35 | 8.43     | 4.69       | 3.65                                | 5.40           |
| 100.00 | 9                                                                           | 36.71 | 34.87 | 7.63     | 5.33       | 2.90                                | 4.63           |

Table 7. Parameters Derived for LiClO<sub>4</sub> Using Eqs. 2 and 3 and Values of Free Energy Change of Ion-Pair Formation in MEK-DMF Mixture at 25°C

| DMF   | <sub>₩</sub> BFPP | _                              | ε′    | $10^8 q$ | $10^{8} a$ | ************************************** | A.C./D.T.      |
|-------|-------------------|--------------------------------|-------|----------|------------|----------------------------------------|----------------|
| wt%   | K <sub>A</sub>    | $K_{\mathbf{A}}$ $\varepsilon$ |       | cm       | cm         | $-U/K_{\rm B}T$                        | $-\Delta G/RT$ |
| 0.00  | 790               | 18.01                          | 10.03 | 15.56    | 3.66       | 9.51                                   | 9.04           |
| 5.00  | 235-              | 18.95                          | 16.17 | 14.78    | 4.72       | 6.46                                   | 7.82           |
| 11.00 | 128               | 20.07                          | 18.77 | 13.96    | 5.66       | 4.99                                   | 7.23           |
| 17.00 | 92                | 21.19                          | 20.04 | 13.22    | 6.04       | 4.42                                   | 6.89           |
| 28.00 | 68                | 23.25                          | 22.04 | 12.05    | 5.76       | 4.22                                   | 6.58           |
| 54.00 | 31                | 28.11                          | 26.66 | 9.97     | 5.54       | 3.64                                   | 5.80           |
| 77.00 | 18                | 32.41                          | 31.28 | 8.65     | 5.93       | 2.94                                   | 5.41           |
| 86.00 | 14                | 34.00                          | 33.37 | 8.22     | 6.12       | 2.48                                   | 5.01           |

 $1.5\times10^3$ ,  $7.9\times10^2$ , and 9 mol<sup>-1</sup> dm<sup>3</sup>, respectively, in agreement with the literature. 5,7,18) But literature survey shows that LiClO<sub>4</sub> is almost dissociated in pure DMF. These results have been derived both from spectroscopic as well as conductimetric studies of LiClO<sub>4</sub> in DMF. Gill et al. have recently reported the value of  $K_A$  for LiClO<sub>4</sub> in Ac and DMF, but not reported  $K_A$ values in Ac-DMF binary mixtures.7) Justice18) has reported the  $K_A$  value of 8 mol<sup>-1</sup> dm<sup>3</sup> for LiClO<sub>4</sub> in pure DMF, which is in good agreement with the value  $9\pm2~{\rm mol^{-1}dm^3}$  derived in the present work. Tables 4 and 5 show that, as the proportion of DMF increased, the corresponding association constant decreased in both Ac-DMF and MEK-DMF binary solvent systems. This is mainly due to the increase in dielectric constant of the medium with addition of DMF to Ac or

Comparing the  $K_A$  values for LiClO<sub>4</sub> in the Ac-DMF and MEK-DMF binary solvent system, it is observed that, despite higher dielectric constant values of the Ac-DMF binary mixtures, LiClO<sub>4</sub> is more associated in these mixtures than in the MEK-DMF binary mixtures. Thus, the isodielectric rule is again not valid in the present case. The present results also do not agree with the  $K_A$  values of LiClO<sub>4</sub> in MEK reported by Milaev. <sup>15)</sup> Similar results were found in a previous study on LiCl in these mixed solvent systems. <sup>8)</sup> Though MEK has lower dielectric constant, it has a greater polarizability volume than Ac. As pointed out by others <sup>19)</sup> the solute-solvent interaction is specific. Both solute and solvent nature (shape, size,

polarizability, dipole moment, and refractive index, etc.) are determinative factors for evaluation of the extent of association constant of electrolytes.

Further, the values of the contact ion-pair distance a for Li<sup>+</sup>ClO<sub>4</sub><sup>-</sup> in pure Ac and DMF have been found to be 3±0.2 and 5.33±0.15 Å, respectively, which are in good agreement with values cited in literature.<sup>5-7)</sup> The values of K<sub>A</sub> and a in pure Ac, indicate that LiClO<sub>4</sub> exists as contact ion pairs; in MEK partial solventseparated and in DMF almost solvent-separated ion pairs are expected (Tables 6 and 7). But small values of  $K_A$  and large values of a of LiClO<sub>4</sub> in the Ac-DMF binary solvent system clearly indicate that LiClO<sub>4</sub> is almost dissociated in these solvent systems. The value of  $K_a$  of LiClO<sub>4</sub> in MEK-DMF are smaller than those found in the Ac-DMF solvent system. Also, the values of a of LiClO<sub>4</sub> are larger in the MEK-DMF system than those found in the Ac-DMF solvent system. It shows that, the nature of the solvent is an important factor for determining an extent of ionic association. The order of preferential solvation of the Li<sup>+</sup> ion by these solvents is found to be DMF>MEK>Ac. Comparing the present results with those observed by others spectroscopically, in pure Ac4b) and DMF,13) an agreement with Popov's results of complete dissociation of LiClO<sub>4</sub> in DMF and disagreement with James et al.'s results—postulating no association of LiClO<sub>4</sub> in Ac upto 1 mol dm<sup>-3</sup> concentration were found.

Free Energy Changes of Ion-Pair Formation and Potential Energy Function of Interionic Interaction. The values of  $\Delta G$ , calculated from  $\Delta G^{\circ} = -RT \ln K_a$ 

for (Li<sup>+</sup>ClO<sub>4</sub><sup>-</sup>) ion pair formation, become less negative as  $\varepsilon$  increases or the contents of DMF increase in Ac-DMF and MEK-DMF binary mixtures (Tables 6 and 7). This is because the enthalpic term  $\Delta H$  in  $\Delta G$  contains the work done in constituting a contact pair from free ions. The  $\Delta H$  also contains a positive term due to replacement of nearest neighbor solvent molecule by the partner ion and hence causing a decrease in entropy. Tables 6 and 7 show that for LiClO<sub>4</sub>- $|\Delta G(\text{MEK})| < |\Delta G(\text{Ac})|$ , which is mainly due to larger polarizability volume of MEK than that of Ac and consequently major role of entropy term and decrease of  $\Delta G$  value of ion-pair formation.

Tables 6 and 7 include the value of  $\varepsilon'$ —a parameter from dielectric saturation modification, and potential energy function  $(U(r)/K_BT)$  of interionic interactions. It is observed that the effect of dielectric saturation plays effective role in pure Ac, MEK and in mixtures of Ac-DMF; MEK-DMF, rich in Ac or MEK contents, respectively, for evaluation of  $K_A$  and a parameters for LiClO<sub>4</sub> in these solvent systems. As the contents of DMF increase in these two mixed solvent systems, the difference of  $(\varepsilon-\varepsilon')$  became less. The same trend is found for potential energy function (P.E.F) of Li<sup>+</sup> ion and ClO<sub>4</sub><sup>-</sup> ion interactions. Both,  $\varepsilon'$  and P.E.F. are interionic distance dependent. Therefore, it can be postulated that Li<sup>+</sup> and ClO<sub>4</sub><sup>-</sup> ions are separated by solvent molecules in Ac-DMF and MEK-DMF mixtures

Gilkerson et al.20) have recently studied conductimetrically some lithium salts in MEK and 2-proponal respectively. They have discussed their results in terms of the square-mound potential model<sup>21)</sup> modification of Bjerrum's theory for ion association. Similarly, Salomon et al.<sup>17)</sup> have also studied some lithium salts in dimethylsulfite (DMSI). They have discussed their results on the basis of Barthel's model<sup>22)</sup> modification of the Bjerrum theory for ion association. In both above models, non-coulombic interaction term in P.E.F has been introduced. It has been found that in present case of Ac-LiClO<sub>4</sub>-DMF and MEK-LiClO<sub>4</sub>-DMF systems, all the three modifications of Bierrum ion association theory, (i.e. those by Fernandez-Prini and Prue, Justice and Justice's squaremound potential model, and that of Barthel), give almost the same result which indicates that LiClO<sub>4</sub> ion pair is solvent-separated. Since it has been found previously a preferential solvation of Li<sup>+</sup> ion by DMF molecules, 7,8) it can be concluded that solvation of Li+ ion by these solvents is of the order DMF>MEK>Ac.

Finally, it can be concluded that though Ac-DMF and MEK-DMF constitute almost ideal systems, <sup>9,16)</sup> the binary mixtures do not act as a single solvent towards an electrolyte. The previous<sup>8)</sup> as well as the present studies show that the ion association process depends upon both solvent and solute.

A comparison of above mentioned modifications of the Bjerrum ion association theory, for the systems Ac-LiCl-DMF, MEK-LiCl-DMF, Ac-LiClO<sub>4</sub>-DMF, and MEK-LiClO<sub>4</sub>-DMF will be published later on in a near future.

Author is thankful to Prof. O. Fischer of J. E. Purkyne University, BRNO for his useful discussion and guidance.

#### References

- 1) Y. Matsuda, M. Morita, and F. Tachihara, Bull. Chem. Soc. Ipn., 59, 1967 (1986).
- 2 a) J. Barthel and R. Buchner, Pure Appl. Chem., 58, 1077 (1986); b) H. J. Gores and J. Barthel, Nature Wiss. Schaften, 70, 495 (1983).
- 3) a) I. S. Perelygin and V. S. Osipov, Russ. J. Phys. Chem., **53**, 1036 (1979); b) I. S. Perelygin, V. S. Osipov, and S. I. Gryazonv, Russ. J. Phys. Chem., **59**, 1462 (1985).
- 4) a) R. L. Frost, D. W. James, R. Appleby, and R. E. Mayes, J. Phys. Chem., **86**, 3840 (1982); b) D. W. James and R. E. Mayes, Aust. J. Chem., **35**, 1775 (1982).
- 5) a) H. C. Brookes, M. C. B. Hotz, and A. H. Spong, *J. Chem. Soc. A*, **1971**, 2410; b) D. F. Evans, J. Thomas, J. A. Nadas, and S. M. A. Mateish, *J. Phys. Chem.*, **75**, 1714 (1971).
- 6) J. E. Prue and P. J. Sherrington, *Trans. Faraday Soc.*, **57**, 1795 (1961).
- 7) D. S. Gill and A. N. Sharma, J. Chem. Soc., Faraday Trans. 1, 78, 465 (1982).
- 8) M. S. K. Niazi, O. Fischer, and E. Fischerova, J. Solution Chem., 15, 957 (1986).
- 9) O. Fischer, M. S. K. Niazi, and E. Fischerova, *Electrochimica Acta*, 27, 791 (1982).
- 10) a) R. M. Fuoss, Proc. Natl. Acad. Sci., U.S.A., 75, 16 (1978); 77, 34 (1980); b) idem, J. Am. Chem. Soc., 100, 5876 (1978); c) idem, J. Solution Chem., 15, 231 (1986).
- 11) N. Bjerrum and K. Dan Vidensk, Selsk, 7, 1 (1926).
- 12) a) R. Fernandez-Prini and J. E. Prue, *Trans. Faraday Soc.*, **62**, 1257 (1966); b) R. Fernandez-Prini, "Physical Chemistry of Organic Solvent Systems," ed by A. K. Covington and T. Dickinson, Plenum Press, London (1973), Chap. 5.
- 13) A. I. Popov, Pure Apple Chem., 47, 275 (1975).
- 14) H. A. Berman and T. R. Stengle, J. Phys. Chem., 79, 1001 (1975).
- 15) S. M. Milaev, Russ. J. Phys. Chem., 56, 1816 (1982).
- 16) P. P. S. Saluja, L. A. Peacock, and R. Fuchs, *J. Am. Chem. Soc.*, **101**, 1958 (1979).
- 17) E. Plichta, M. Salomon, S. Slane, and M. Uchiyamn, J. Solution Chem., 15, 663 (1986).
- 18) J. C. Justice, Electrochimica Acta, 16, 708 (1971).
- 19) A. D. Aprano and R. M. Fuoss, J. Solution Chem., 3, 45 (1974); 3, 363 (1974); 4, 175 (1975).
- 20) W. R. Gilkerson and K. L. Kendrick, *J. Phys. Chem.*, **88**, 5352 (1984); H. F. Chun and W. R. Gilkerson, *J. Solution Chem.*, **12**, 161 (1983).
- 21) J.-C. Justice and M.-C. Justice, Faraday Disc. Chem. Soc., 64, 265 (1977).
- 22) J. Barthel, H.-J. Gores, G. Schemeer, and R. Wachter, "Topics in Current Chemistry," Vol. 3, Springer-Verlag Heidelberg (1982), pp. 33—144.
- 23) F. Booth, J. Chem. Phys., 19, 391 (1951).
- 24) "Techniques of Chemistry Vol. II, Organic Solvents," 3rd ed, ed by J. A. Riddick and W. B. Bunger, Wiley-Interscience, New York (1970).